Mathematics and truth

 

After Non-Euclidean Geometry: Intuition, Truth and the Autonomy of Mathematics
Janet Folina

Abstract

The mathematical developments of the 19th century seemed to undermine Kant’s philosophy. Non-Euclidean geometries challenged Kant’s view that there is a spatial intuition rich enough to yield the truth of Euclidean geometry. Similarly, advancements in algebra challenged the view that temporal intuition provides a foundation for both it and arithmetic. Mathematics seemed increasingly detached from experience as well as its form; moreover, with advances in symbolic logic, mathematical inference also seemed independent of intuition. This paper considers various philosophical responses to these changes, focusing on the idea of modifying Kant’s conception of intuition in order to accommodate the increasing abstractness of mathematics. It is argued that far from clinging to an outdated paradigm, programs based on new conceptions of intuition should be seen as motivated by important philosophical desiderata, such as the truth, apriority, distinctiveness and autonomy of mathematics.

Full Text:
PDF

One thought on “Mathematics and truth

Please join the discussion!

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s